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A numerical method for inverse design based on the
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SUMMARY

We present a numerical method for the inverse shape design of internal �ows based on the inverse
Euler equations (Keller JJ, Physics of Fluids 1999; 11 and Zeitschrift f�ur Angewandte Mathematik und
Physik 1998; 49). We describe an e�cient numerical method based on a �nite di�erence discretization
and on a Newton–Krylov solver. After showing that the three-dimensional (3D) inverse Euler equations
hold only for complex lamellar �ows, we extend the basic axis-symmetric �ow model to handle viscous
e�ects by means of a distributed loss model and to handle quasi-3D e�ects by deriving a quasi-3D
formulation of the inverse Euler equations from the passage averaged 3D Euler equations. The coupling
of the 2D inverse Euler equations with an integral boundary layer method is presented too. Copyright
? 2003 John Wiley & Sons, Ltd.

KEY WORDS: inverse Euler equations; inverse design; target-pressure-problem; internal �ows;
quasi-three-dimensional (Q3D); distributed loss model

1. INTRODUCTION

One of the main goals of aerodynamic design of gas turbine components is the reduction of
losses due to e.g. viscous e�ects, shocks in the blade rows or separation. Most of these losses
can be controlled or at least limited by a judicious choice of the pressure gradient acting
on the walls of the device. For example, separation can be avoided by reducing the adverse
pressure gradient. Therefore, solving the target-pressure-problem (for di�users) which reads

�nd the shape of a di�user which generates a given, target pressure distribution
along its side walls

is a possible way to increase the performance of a turbine.
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Three main approaches have been applied to the target-pressure-problem, the optimization
approach, the inverse design approach and the trial and error method. The simplest of the three
methods, the trial and error approach, is widely used in gas turbine industry: the iterative pro-
cess consisting in de�ning a geometry, solving the �ow equations and comparing the resulting
pressure distribution along the side walls to the prescribed one, is repeated until a satisfactory
matching is found. The advantage of this approach lies in its simplicity, disadvantages are the
time-consuming procedure and the limited improvement of the devices.
An optimized di�user shape can be found in an automatic way by solving an optimization

problem, such as minimization of viscous losses or of deviation from a given target pressure
(e.g. Reference [1]). The strength of the optimization approach lies in its generality and in
the fact that it can be fully automated, the disadvantages are the high computing time and
resources needed.
The third class of methods, the inverse design approaches, directly solve the target-pressure

problem by specifying the target pressure as a boundary condition. The advantage of these
methods lies in their speed, since the most CPU intensive step in an optimization method, the
computation of gradients, is avoided. The inverse methods are based either on a moving grid
strategy [2, 3] or on an intrinsic streamline aligned system of co-ordinates [4–8]. Methods
implementing the second strategy are called single-pass methods. Approaches based on a
moving grid strategy can be applied to complex, three-dimensional (3D) viscous �ows [2],
but the convergence to the �nal geometry is usually very slow (an exception is the method
developed in Reference [3]). On the other side, single pass methods converge quickly but
the domain of application is more restricted. They have been applied to 2D potential [8] and
rotational �ows [7], axis-symmetric �ows without swirl [6] and 3D potential �ows [8, 9]. One
of the results of this paper is to delimit the domain of application of the single pass methods
(Section 2.5). In the applications we have in mind (design of exhaust di�users and burning
chambers) the geometries are axis-symmetric and the �ows can be described by a quasi 3D
approximation. Therefore, we develop an extension of the existing single pass axis-symmetric
design methods to handle quasi 3D e�ects.
In this work, we follow the Ansatz of References [4, 5] in which one reformulates the

Euler equations in a streamline-based system of co-ordinates and then applies the hodograph
transformation. We precise the original formulation of Keller’s inverse Euler equations by
specifying a set of boundary conditions as well as the details of a numerical method for
their e�cient solution. As already mentioned above, one of our main contributions is an
analysis of the validity of the 3D inverse Euler equations (and related methods), which are
shown to hold only for a limited class of �ows, and not for general 3D �ows in channels.
Starting from this negative result we develop a series of enhancements of the basic axis-
symmetric inverse Euler equations to incorporate losses caused by shocks via a distributed
loss model [10] as well as losses in a boundary layer by an integral method. Three dimensional
e�ects such as blockage and de�ection due to the presence of blades can be described in an
economical, but nevertheless accurate way by a quasi-3D (Q3D) �ow model. We take these
phenomena into account in a novel inverse formulation of the Q3D �ow equations described in
Reference [11].
This paper is structured as follows. In Section 2, we review the work of Keller [4, 5] and

show that the 3D inverse Euler equations hold only for a limited class of �ows. Section 3
is devoted to the description of the numerical method, which is then applied to a practical
example in Section 4. In Section 5, we extend the basic equations to a novel Q3D inverse
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INVERSE DESIGN FOR INTERNAL FLOWS 341

formulation and in Section 6 we describe a boundary-layer method which is coupled to the
2D inverse Euler equations.

2. KELLER’S INVERSE EULER EQUATIONS

In this section, we review the work of Keller [4, 5]. The goal is to present the main ingre-
dients of his derivation of the inverse Euler equations. These basic ideas will be useful for
understanding the limitations of the 3D inverse Euler equations, as well as for understanding
the modi�cations needed to handle viscous and quasi-3D e�ects. Details can be found in
Reference [12].

2.1. Flow equations

We consider an axis-symmetric, isentropic, but not homentropic, �ow which satis�es the non-
conservative Euler equations in Crocco’s form

@x(�ru) + @r(�rv) = 0 (1a)

∇H − T∇s− C
r2

∇C = u⊥! (1b)

u · ∇C =0 (1c)

u · ∇H =0 (1d)

u · ∇s=0 (1e)

where u=(u; v)T, u⊥=(v;−u)T, u; v; w are the velocity components in axial, radial and azi-
muthal direction, � is the density, p the static pressure, H = cpT + 1

2(u
2 + v2 + w2) the total

enthalpy, s the entropy, C= rw the angular momentum. != @xv − @ru denotes the vorticity.
We assume that the �ow is smooth and therefore the entropy is constant along a streamline,
but not necessarily across the �ow; each streamline can have a di�erent level of entropy, thus
generating vorticity and rotational e�ects. C;H; s are called integrals of motion since constant
along a streamline by (1c), (1d) and (1d). We recall that for smooth �ows and away from
stagnation points (1) is equivalent to the Euler equations in conservation form. The aim of
the next section is to reformulate (1) in such a way the shape design problem can be easily
solved.

2.2. Inverse Euler equations

In the target pressure problem the geometry of the �ow device in which (1) holds is not
known a priori. By a judicious choice of the independent co-ordinates, we can nevertheless
de�ne a �xed, a priori known computational domain.
We introduce the natural co-ordinate � by

h∇�=
u
‖u‖ (2)
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where h is an integrating factor which ensures the existence of the ‘potential’ � even for
rotational �ows. Further we introduce a stream-function  by

∇ = r�u⊥ (3)

in such a way that the mass conservation (1a) is automatically satis�ed. We call (�;  ) the
inverse co-ordinates. The key observation of many inverse methods [6, 7] is that the stream-
function  is constant along the unknown walls of the di�user, independently of their shape.
In other words, the �ow device is always mapped onto a known and �xed rectangle in
inverse co-ordinates. Keller’s idea was to rewrite (1) in inverse co-ordinates and to introduce
the geometry variables x; r; h instead of the �ow variables �; u; H . Carrying out some tedious
algebra [5] an inverse formulation of the Euler equations is found:

@ H − T @ s− C
r2

@ C =
1

�rJ
@ 

(
h2

�rJ

)
(4a)

@�C =0 (4b)

@�H =0 (4c)

@�s=0 (4d)

where J is the Jacobi determinant of the co-ordinate transformation. The inverse formulation
of the Euler equations (4) reduces to four ordinary di�erential equations instead of �ve partial
di�erential equations (1).
The mapping x=x(�;  )= (x(�;  ); r(�;  ))T is not yet de�ned. By comparing the de�ni-

tions (2) and (3) we �nd

x�=
h2

J
x⊥ (5)

The �rst-order system (5) is not quasi-linear. Its linearization is elliptic and unfortunately it
is not well suited for the development of a reliable and fast numerical method. Therefore,
distancing ourselves a little bit from the original formulation of Keller, we substitute (5) by
the corresponding second-order system

@�

(
J
h2

@�x
)
+ @ 

(
h2

J
@ x

)
=0 (6)

which is found by cross di�erentiation. In this step we lose a priori the orthogonality of the
grid. Numerical computations and Proposition 1 below, show that the orthogonality of the
grid is maintained. We call the non-linear system of partial di�erential equations (4) and (6)
inverse Euler equations.
The isolines of � and  generate an orthogonal grid since ∇� · ∇ =0. This property of

the grid is not directly present in system (6), but we can show the

Proposition 1
For each su�ciently smooth solution of the non-linear elliptic problem

x�; � + x ;  =0 in � (7)

x� · x =0 on @� (8)
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it holds that

x� · x = 0 in � (9)

In particular the grid generated from an isentropic, incompressible �ow, i.e. for h2=J =1, is
orthogonal.
The proof consists in showing that g(�;  )=x� ·x satis�es a Laplace equation with homoge-
neous Dirichlet boundary conditions and therefore, by invoking the maximum principle, must
vanish identically.
The inverse Euler equations can be interpreted as a special type of grid generation procedure.

In fact the scaled Laplace equations (6) are well known in the �eld of elliptic grid generation
[13]. Elliptic grid generation procedures are characterized by the procedure they use to place
the grid lines, i.e. where to re�ne. In the inverse Euler equations, the position of the grid
lines, or of the streamlines, is determined by the factor �= h2=J . This geometrical factor is
found by solving the momentum conservation (4a). We can therefore say that our method for
inverse design consists in a grid generation procedure driven by physical considerations for
placing the grid lines.

2.3. Geometry—�ow �eld relations

Geometry and �ow variables are coupled by de�nitions (2) and (3). For the speci�c mass�ow
m := ‖�u‖ we �nd the following relation:

m=
1
r
‖∇ ‖= 1

rJ
‖x�‖= 1

r‖x ‖ =
h
rJ

(10)

In an isentropic �ow we can relate the speci�c mass�ow to the remaining variables by the
isentropic relations [4]. The stagnation quantities �0, p0, T0 are known from the inlet boundary
conditions and do not need to be constant everywhere. The rotational e�ects are given by non-
vanishing  -derivatives of the stagnation quantities, while the entropy production in a viscous
�ow can be modelled by a non-vanishing �-derivative of the same quantities, see Section 5.2.
Since the �ow—geometry relations (10) give a direct connection between speci�c mass�ow

and geometrical factors, we exclusively work with the speci�c mass�ow, even if the concept
of the target pressure, being more intuitive, is kept in mind. The target pressure problem is
transformed into the equivalent target speci�c mass�ow problem.

2.4. Computational domain and boundary conditions

We prescribe boundary conditions which coincide with standard boundary conditions for sub-
sonic internal �ows:

At inlet: we impose the stagnation temperature T0, the stagnation pressure p0, the angular
momentum C and the �ow angle in the meridional plane. In this way we can compute the
values of all the integrals of motion.
At outlet: we prescribe a static pressure distribution. As described in Section 2.3 we �rst
convert it to a speci�c mass�ow distribution moutlet. The boundary condition looks then like

h2

J
−m2

outlet Jr
2 = 0 (11)
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On a side wall (direct): we impose the geometry of the wall by means of an algebraic
equation

f(x; r)=0 (12)

On a side wall (inverse): we impose a pressure distribution p(�). By means of relation (10)
this boundary condition is implemented as

r2‖x ‖2 = 1
m2
wall

(13)

where m2
wall is the speci�c mass�ow corresponding to p(�).

These boundary conditions fully determine the �ow in the domain. For solving the inverse
Euler equations we need the following additional boundary conditions which de�ne the grid:

Orthogonality BC: the grid must be orthogonal, therefore following Proposition 1 we impose
on the whole boundary the condition

x� · x =0 (14)

Length BC: the ordinary di�erential equation (4a) needs an initial value. We impose the
distribution of the integrating factor h along the  =0 boundary by

h=1 (15)

We recall that this is equivalent to �xing the length of one streamline.
Translation BC: the shape of the di�user can be translated and rotated and still satisfy the
inverse Euler equations. In order to exclude the possibility of a translation we need to �x one
point. For example we impose

x(0; 0)= 0 (16)

We take care of the rotational invariance of the solution by means of the inlet boundary
condition which sets the �ow angle, and hence the orientation of the inlet surface.

Our choice of independent co-ordinates allows us to de�ne a rectangular computational
domain [0; �max]× [0;  max]. The value of �max is set to be equal to the length of the reference
streamline at  =0. The value of  max is by de�nition equal to the total mass�ow through
the channel

 max =
∫
inlet

�u · n do (17)

In the case of an inverse computation the height of the channel is not de�ned a priori.
The designer must prescribe the value of  max, and the height of the channel will adjust
itself to generate the correct mass�ow. The situation is di�erent in the case of a direct
computation where both side walls are �xed. The value of  max must be iteratively updated
by integrating (17).
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2.5. Remarks on 3D and viscous �ows

One of the main contributions in Reference [4] was the extension of the ideas presented
above to three dimensions. We will show in this section that unfortunately the 3D inverse
Euler equations hold only for a restricted class of �ows.
The de�nition of the natural co-ordinate � for a 3D velocity �eld is

h∇�=
u
‖u‖ (18)

where now u ∈ R3 is the velocity vector in Cartesian co-ordinates. The simple computation
u · ∇× u=(‖u‖h)∇� · (∇(h‖u‖)×∇�+ (h‖u‖)∇×∇�)=0 (19)

proves

Proposition 2
The integrating factor h and the natural co-ordinate � exist if and only if

u · ∇× u=0 (20)

In particular h and � exist for 2D and axis symmetric rotational �ows, or for 3D potential
�ows.

Flows satisfying (20) are called complex lamellar [14]. From Proposition 2 it follows that
we cannot expect the existence of the natural co-ordinate for a general �ow, and therefore
Keller’s construction of the inverse Euler equation cannot be applied. An example of a �ow
not satisfying (20) is a free vortex generated by the velocity vector u=(−y; x; 1)T. Since this
kind of �ows is very common in turning ducts, the 3D inverse equations lose their validity,
resp. they will have no solution or produce a non-physical �ow.
Another di�culty arises with viscous �ows. Along solid side walls the velocity vanishes

due to the no-slip condition u=0. In consequence, it is no longer possible to de�ne a stream
function according to (3): the co-ordinate transformation (x; r)→ (�;  ) becomes singular along
solid side walls. Even if this singularity might be removable by scaling the stream function
appropriately, it is intuitively clear that in case of separated �ows streamlines can not be used
as co-ordinates.
The above objections can be softened in two ways. First, 3D e�ects can be modelled by a

Q3D �ow model (Section 5), if the geometry under consideration allows for this possibility.
Second, if viscous e�ects are limited to small regions close to the side walls, they can be
accounted for by a boundary-layer method (Section 6). Both extensions are very useful for
design purposes, as they allow for a remarkable saving in computing time when compared to
fully 3D or viscous computations.

3. DISCRETIZATION AND SOLUTION PROCEDURE

We describe a numerical method for the solution of the inverse Euler equations. Since the
�ow is smooth, a discretization based on �nite di�erences and a Newton–Krylov solver are
chosen.
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3.1. Discretization

On the computational domain [0; �max]× [0;  max] we introduce a uniform grid with spacing
��=�max=N� and ��=  max=N , where N�; N are the number of cells in � resp.  direction.
The grid points are (�i;  j)= (�� i;� j) for i=0; : : : ; N�; j=0; : : : ; N . The unknowns in the
inverse Euler equations are x; r; h. For sake of an easier implementation, we prefer to work with
� := h2=J instead of h. The nodal values of the unknowns are denoted by xi; j= x(�i;  j); : : : .
On this grid we introduce the standard di�erence operators

D0
� f(�i;  j) =

f(�i +��;  j)− f(�i −��;  j)
2��

(21)

D+
� f(�i;  j) =

f(�i +��;  j)− f(�i;  j)
��

(22)

D−
� f(�i;  j) =

f(�i;  j)− f(�i −��;  j)
��

(23)

and their counterparts in  direction.
The scaled Laplace equations (6) are discretized as

1
�i; j

D+
� D−

� xi; j +�i; jD+
 D−

 xi; j +D0
�

(
1
�i; j

)
D0

� xi; j +D0
 �i; jD0

 xi; j=0 (24)

for i=1; : : : ; N� − 1; j=1; : : : ; N − 1.
The ordinary di�erential equation (4a) is discretized by the trapezoidal rule.
The boundary conditions are discretized by second-order one-sided �nite di�erences. As an

example on  =  max we apply

@ xi; j ≈
(
3
2
xi; j − 2xi; j−1 + 12 xi; j−2

)
1
� 

(25)

Special care must be taken in order to avoid zeros on the diagonal of the Jacobian of the
discretization’s functional. Therefore, tangential derivative @� is discretized on  =0;  =  max
by the third-order di�erences

@�xi; j ≈
(
1
6
xi−2; j − xi−1; j + 12 xi; j +

1
3
xi+1; j

)
1
��

(26)

The overall discretization is of second order of accuracy. This accuracy of the method has
been addressed by standard benchmark test cases [15] as well as by cross-validation with a
di�erent code, see Section 4.1 and Reference [12].

3.2. Solution procedure

Discretization of the inverse Euler equations yields a large system of algebraic equations

F(x∗)= 0 (27)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:339–355



INVERSE DESIGN FOR INTERNAL FLOWS 347

The discretized equations (27) are solved by Newton’s method

DF(xn)�xn =−F(xn) (28a)

xn+1 = xn +�xn (28b)

where the sequence xn approximates x∗. The linearized equations (28a) are solved by a
BiCGStab iterative solver [16], preconditioned by an incomplete LU factorization. These
methods are implemented in the numerical library ‘Portable Extensible Toolkit for Scienti�c
Computation’ (PETSc) [17].
In addition to these standard methods, we propose a nested iterations strategy to �nd the

initial guess for Newton’s method. On a coarse grid we solve the discretized equations with
Newton’s method; because of the small number of unknowns a long searching phase will be
cheap in terms of computing time. Once the solution on the coarse grid is known, we transfer
it by bilinear interpolation to the next �ner grid. The interpolated solution is used as initial
guess on the �ner grid. This initial guess being already very accurate, Newton’s method will
converge very fast, typically in 4–6 steps. We repeat this procedure until the desired accuracy
is achieved. In a typical run, the nested iterations strategy reduces the computing time by a
factor 6 with respect to a simple Newton method. The speedup factor increases as the �nal
grid gets �ner.

4. APPLICATION EXAMPLES

4.1. Annular di�user

To demonstrate the capabilities of the method the inverse design of a compressor di�user
is considered. Because of the space requirements of turbine and combustor a curved di�user
is chosen. The inverse design procedure is motivated by the request of being able to avoid
�ow separation. In the �rst step the �ow is computed for the baseline design (in direct
mode). The resulting static pressure distribution along the side walls can be used as a starting
point to de�ne a inverse design strategy. In order to satisfy geometric constraints imposed by
neighbouring parts the inner wall (the one starting at the smaller radius) remains �xed. The
outer wall is a better candidate for �ow separation and should be designed according to the
largest admissible adverse pressure gradient, which minimizes losses and risk of separation.
These considerations may lead to the following inverse boundary condition (we prescribe the
speci�c mass�ow distribution):

m(�)=




1:0; �6�0

0:3; �¿�0 + 5

0:65 + 0:35 cos(�=5(� − �0)) otherwise

(29)

The streamwise location �0 where the transition starts is left as an additional degree of
freedom. In Figure 1 we present four di�users which generate the same pressure recovery for
di�erent values of �0. The designer can now choose between the various shapes by applying
other optimization criteria such as quality of the �ow at the outlet.
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Figure 1. Inverse design of an annular di�user: The wall starting at r=1 is �xed, at the other
wall a speci�c mass�ow distribution (29) is enforced. The distribution is the same for all cases
up to the location of the transition between low and high pressure (parameter �0, which is an
additional degree of freedom for the designer). The di�erent positions of transition between the
two pressure levels are clearly recognizable from the Mach number isolines. The computations

have been performed on a 320×48 grid.

The results have been validated using the inviscid version of NSMB [18]. In addition,
extensive grid-dependence studies have been performed. For a 320×48 grid, the solution can
be assumed grid independent. The di�erence between in the pressure �eld computed by the
two codes is below 0:5%, see Reference [12].

4.2. Inverse design of a turbine inlet

The second example concerns the design of a turbine inlet. We assume steady inviscid axis-
symmetric �ow. Although this is not an adequate model in a strong sense, it will be accurate
enough for a preliminary design stage. The inner wall is kept �xed, while the outer wall is
subject to inverse design. The design goal is to obtain a velocity distribution along the side
walls as smooth as possible, since peaks in the velocity distribution would adversely a�ect
heat conduction properties. The prescribed velocity distribution is shown in Figure 2(a). As
mentioned above, this velocity distribution is converted to a speci�c mass�ow distribution by
isentropic relations. The �ow is almost incompressible as the Mach number is below 0.2. At
the inlet (which is the outlet of circumferentially arranged combustor nozzles) a linear swirl
pro�le is assumed with a relatively high circumferential velocity (50% of the meridional
velocity at the inner and outer walls). The resulting geometry and the Mach number contours
are shown in Figure 2(b).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:339–355



INVERSE DESIGN FOR INTERNAL FLOWS 349

σ

u 
(σ

)

0 0.25 0.5 0.75 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

3

5

23

X

Y

0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Level M
25 0.675
23 0.625
21 0.575
19 0.525
17 0.475
15 0.425
13 0.375
11 0.325

0.275
0.225
0.175
0.125
0.075

9
7
5
3
1

Figure 2. Inverse design of a turbine inlet: (a) prescribed velocity distribution along the
upper wall. The lower wall geometry is �xed; (b) resulting geometry and Mach number

�eld. The �ow is from right to left.

5. QUASI-THREE-DIMENSIONAL FLOWS AND DISTRIBUTED LOSS MODEL

The nature of turbomachinery �ows is unsteady, viscous and 3D. However, for nearly axis-
symmetric con�gurations a 2D approach can be used if the variations in two space dimensions
are more important than those in the third one. In order to treat these �ow situations with lim-
ited 3D e�ects an intermediate description between the fully 3D and the 2D can be introduced,
which is called Q3D [11].

5.1. Passage averaged equations

The basic idea is to average the �ow equations over the angular co-ordinate � and to express
the averaged equations in terms of averaged quantities. For the density � and the pressure p
we use passage averaging between pressure and suction side (subscripts p and s, respectively),
while for all other quantities density weighted averaging is employed:

�=
1

�s − �p

∫ �s

�p
� d�; �=�+ �′ (30a)

ũ=
1

�(�s − �p)

∫ �s

�p
�u d�; u= ũ+ u′′ (30b)

For the sake of de�niteness we repeat the passage averaged �ow equations here (see e.g.
Reference [11] for details; tildes and overbars are omitted for simplicity):

@x(�Bru) + @y(�Brv) = 0 (31a)
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u@xu+ v@ru+
1
�
@xp= FB; x + FP; x (31b)

u@xv+ v@rv− w2

r
+
1
�
@rp= FB; r + FP; r (31c)

u@xC + v@rC = r(FB; � + FP; �) (31d)

Here the blockage factor B=N=2�(�s − �p) has been introduced, where N is the number of
blades. In the continuity equation no additional terms appear, since we use density averaged
velocity components. The additional force terms in the momentum equations FB (blade forces,
�ow de�ection) and FP (perturbation terms, deviation from average) are of the form (e.g.)

FB; x =
N
2�B�

(p′
s@x�s − p′

p@x�p)

FP; x =− 1
rB�

(@x(rB�u′′2) + @r(rB�u′′v′′))

They are determined by a blade-to-blade computation. Perturbation terms are neglected here
for simplicity. The energy equation becomes (in the absence of perturbation terms)

u@xH + v@rH =F · u+ C
r2
u · ∇C=G · v=0 (31e)

where G=(FB; x; FB; r ; FB; �)T, v=(u; v; w)T, F and u are the �rst two components of G and v,
respectively. For non-rotating blades the blade force is orthogonal to the local velocity vector,
therefore the right-hand side of (31e) vanishes.

5.2. Distributed loss model

An exact prediction of loss mechanisms and loss distributions is prohibitively expensive for
design purposes. However, it is possible to model the e�ect of shear stresses on the motion by
a distributed friction force [10]. Empirical information (e.g. stagnation pressure drop between
inlet and outlet) can be used to model entropy generation due to losses or shocks. Details of
where and how losses are generated are neglected. In particular, the �ow close to walls is not
described correctly and it is necessary to superimpose a boundary layer approximation (see
Section 6). However, the main aspects of the averaged �ow can be captured correctly. The
corresponding �ow model is basically inviscid but not isentropic.
The basic assumptions are the following: The e�ect of shear stresses � is modelled by a

semi-empirical external friction force Gf:

∇ · �≈�Gf=(Ff; x; Ff; r ; Ff; �)T (32)

Here again we use the notation Ff and u for the meridional components of Gf and v. Further
we assume that the kinetic energy losses are compensated by heat di�usion. This is reasonable
for many practical situations where the Prandtl number is close to one. In the Q3D equations
(31) the external friction force Gf has to be added to G.
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The explicit form of Gf remains to be speci�ed. At the end of this section we present an
example.

5.3. Inverse equations

Since the blocking factor B appears in the continuity equation we have to change the stream
function de�nition (3) into

∇ =�rBu⊥

Following the procedure of Section 2 the inverse Euler equations with a distributed loss
model are

@�

(
J
h2

@�x
)
+ @ 

(
h2

J
@ x

)
=0 (33a)

@ H − T@ s− 1
�rBJ

@ 

(
h2

�rBJ

)
− C

r2
@ C= − J

h2
(F+ Ff) · x⊥� (33b)

@�C=�r2BJ (FB; � + Ff;�) (33c)

@�H =0 (33d)

T
�rBJ

@�s= v ·Gf (33e)

The energy equation states again that the total enthalpy H is conserved along streamlines. In
absence of external heat sources and shocks the external friction force is the only source of
entropy generation.

5.4. Application example: quasi-three-dimensional blade channel

Here we present the application of the Q3D and distributed loss model to inverse design of a
blade channel. In Figure 3(a) (tangential S1 plane) the blade shape and the resulting blockage
function B are shown. A blade-to-blade tool [19] has been used to generate the blades. The
surface pressure distribution allows determination of the blade forcing terms FB in the passage
averaged equations. We are faced with the problem to design the shape of the casing in the
meridional plane (S2 plane, Figure 3(b)). The wall at r=1 is �xed, while the other one is
subject to inverse design. In particular, we prescribe the meridional speci�c mass�ow

m=




1; �62

0:5; �¿4

0:75 + 0:25 cos(�=2(� − 2)) else

The in�ow Mach number is set to 0.4. For comparison, two resulting wall shapes are shown:
the lower one without and the upper one with blockage e�ect and blade forces.
In the next step we introduce the distributed loss model. Neglecting all local details of loss

generation we assume that the external friction force is oriented anti-parallel to the meridional
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Figure 3. Q3D example: (a) tangential S1 plane and given blade geometry (left scale), corresponding
blockage factor B (dashed line, right scale); (b) meridional S2 plane: geometry and orthogonal streamline
grid with (upper contour line) and without Q3D e�ects; (c) pro�les of friction force Ff for distributed
loss model; for increasing n, losses are concentrated near the walls, in a way similar to a boundary

layer; (d) resulting entropy contours for n=2.

velocity vector:

Ff=− u
‖u‖ Ff; Ff¿0

The assumed spanwise friction force distribution is shown in Figure 3(c) (n=2): losses are
concentrated near the casing. The resulting shape and the entropy contours are shown in
Figure 3(d). The shape is the same as before, since the same speci�c mass�ow boundary
condition is enforced as in the loss-free case. The static pressure distribution is however
di�erent because of the streamwise change of total quantities.
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6. BOUNDARY-LAYER FORMULATION

It is important to take viscous e�ects into account at an early design stage. However, solving
the full Navier–Stokes equations requires a �ne grid, hence it is generally considered too
expensive for design purposes. If separation regions are limited (which is indeed the aim of
di�user design), zonal approaches based on an inviscid computation and a separate boundary-
layer treatment o�er reasonable accuracy at dramatically reduced cost.
The idea is to solve the inverse Euler equations in the inviscid interior zone as described in

Section 2.2. In the viscous near-wall zone the two-equation boundary-layer method presented
in Reference [20] is employed. The main input parameters are the Mach number and velocity
distribution Me and ue at the edge of the boundary layer. The boundary-layer method yields
the displacement thickness

�∗=
∫ (

1− �u
�e

ue

)
d� (34)

which corresponds to the thickness of a rectangular pro�le with same �eue and total mass�ow
[21]. The physical boundary of the interior inviscid computation therefore must be displaced
by �∗. For an inverse wall the edge velocity ue can be determined a priori from the prescribed
pressure distribution by the isentropic relations [4]. �∗ is then simply added to the resulting
inviscid geometry. For a direct computation ue is not known in advance; it results in turn
from the solution in the inviscid interior (for a given displacement thickness).
If this coupling is treated explicitly the convergence behaviour may be poor. Therefore, we

choose to solve the boundary-layer equations along with the inviscid �ow equations. More-
over, the boundary-layer ODEs are sti� and must be discretized with an implicit scheme.
For unseparated boundary layers the trapezoidal rule has shown to produce su�ciently accu-
rate results. Implicit discretization of the boundary layer equations and implicit coupling of
boundary-layer treatment and �ow computation �t well into the framework of a full Newton
solver described in Section 3.2.
We apply this formulation to the inverse design of a 3D di�user. The Reynolds number

is Re=9:7×105, the in�ow Mach number M=0:2, and the inlet boundary-layer thickness is
approximately 10% of the channel height. The lower wall is kept �xed at y=0, while the
upper one is subject to inverse design. We impose the speci�c mass�ow distribution in such
a way that the adverse pressure gradient remains below a critical value (we try to avoid
separation):

m(�)=



1 �62

1
2

(
1 +

1
1 + (x − 2)2=10

)
else

Figure 4 shows the computational domain in the inviscid region. The growth of the displace-
ment thickness is well visible in the regions of adverse pressure gradient. The corresponding
inviscid solution is shown in the lower �gure.
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Figure 4. 2D di�user. Comparison of an inviscid design with a design taking
into account a laminar boundary layer.

7. CONCLUSION

We presented a hierarchy of �ow models and their inverse formulation in the framework of the
inverse Euler equations of Keller [4, 5]. Starting from the basic rotational axis–symmetric �ow
equations we added features for handling losses by a frictional force which can be calibrated to
match experimental data and for handling blockage and forces due to the presence of blades.
These novel formulations of the inverse Euler equations replace the 3D inverse equations,
which have been shown to hold only for a limited class of �ows, and in particular not to be
valid for general 3D duct �ows. In a series of numerical examples we showed the in�uence
of the new terms in the inverse Euler equations. Current research toward a 3D design tool
consists in de�ning a system of co-ordinates which is �ow aligned only along the side walls,
and solving the resulting grid generation and �ow equations in a coupled way.
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